

Risk Mitigation Strategies for mmWave Production Test Environments

Ryan Garrison Kevin Ayers

SWTest | June 3 - 5, 2024

Drivers for RF Wafer Level Test

5G/6G mmWave Mobile

- Antenna in Package (AiP)
- RFFE Modules including LNA, switch, tuner and filter devices

SYSTEMPIO

Garrison/Ayers

Power amp

Switch

New Communications

- Between vehicles (V2V) and between vehicles and infrastructure (V2I)
- Satellite internet and direct to mobile

SWTest | June 3 - 5, 2024

IoT and Wearables

- AR/VR
- Smart TVs
- Watches
- Etc...

Raising the Bar

P4000

P2000

P800S

- RF device technology is constantly innovating and ramping-up volumes
- Costs-of-test must come down
- Ergo, we must increase parallelism

A new challenge was also raised

Metric	Unit	RFC	MSI	P800s	P2000s	P4000s	
pical pin count	#	20	50	1200	2500	5000	

- Larger probe heads with more probes create high system forces
- Resulting deflections need characterization to ensure optimal contact and durability
- A novel method was used to precisely characterize relative deflections
- Bonus: Real world deployment revealed some unexpected transient responses

Ty

The Need

- With high pin count FFI Pyramid probe heads, a significant portion of the prober overtravel (POT) is deflecting the system, not the probe head spring (AOT).
- A method is needed to measure the probe head spring deflection (AOT).
- Deflection measurements will enable FFI to recommend customer operating parameters (POT)

Definitions

- AOT=Actual Overtravel of probe head spring
 AOT has a direct relationship with probe force
- POT=Programmed Overtravel of Prober Chuck

Existing Methods to measure AOT/POT

1. Clay Puck Method

Process: Clay puck is compressed during overtravel. Changed height of clay puck is measured using prober camera.

Downsides: Accuracy less than desired

2. Push Pin Method Process: Pin is pushed into stiffener during overtravel and then measured with prober camera.

Downsides: Unable to use for FFI Pyramid

Pin partially inserted before AOT/POT test

Pin pushed into receptacle after AOT/POT test

Simulation

- FEA Simulations of the probecard have also been used to estimate AOT/POT.
- Downside: Modeling of AOT/POT is complex as the probecard, tester docking system, prober head plate, and chuck need to be modeled.
- A method for direct measurement of AOT/POT is preferred over simulation

D: 9b All Type: Directional Deformation(Y Axis) Unit: µm Global Coordinate System Time: 1

FEA Simulation of P2K and UltraFLEX Probe Card

•

A new method to measure AOT/POT

New Method: Flex circuit capacitive sensor

Highlights:

- <1µm resolution
- 4 data points per millisecond (4 KHz)
- 500µm range

Lowlights:

Cables must be routed out of prober/tester

Cap sensor next to Mr. Lincoln

SWTest | June 3 - 5, 2024

AOT/POT Results

- Good correlation between both cap sensors (No significant core tilt)
- AOT/POT enables Operating POT window recommendation

AOT/POT By Wafer Location

• No significant difference in AOT/POT by wafer location (No evidence of chuck tilt)

AOT/POT Variation by Prober

~20% difference in AOT/POT between probers at customer #2

SWTest | June 3 - 5, 2024

Bonus: Transient Response Testing

- AOT vs Time on Solder Bumps
- Prober Bounce
- Z-up Mystery
- Cleaning Concerns

AOT vs Time on Solder Bump

- Reduction in AOT after prober Zup is due to probe tips penetrating into solder bump.
- Sensor data helps to quantify transient response of tip penetration into solder

Probe mark in

solder bump

Prober Bounce

- Undesirable transient oscillation observed at Customer #2
- Root cause was due to incorrect deceleration settings on prober
 - Customer delighted issue was discovered and resolved

Z-up Mystery

- Strange short duration Z-up observed after cleaning
- Root Cause: Prober setting → Return to previous position after cleaning
 - Undesirable setting as 1st TD after cleaning is made on a previously probed die.
- Prober setting changed to → Go to next die after cleaning

Garrison/Ayers

Cleaning Concerns

- Unexpected shift in cleaning AOT measured at customer site.
 - Both events captured during one continuous test
- At a minimum, excessive cleaning AOT observed will reduce lifetime
- Leading suspect is cleaning plate not parallel to headplate

Summary

Capacitive sensor method presented can:

- Precisely characterize AOT/POT, enabling recommended operating conditions for high probe count Pyramid cores
- Measure transient mechanical response, ensuring test cell is properly setup
- Demonstrated to be effective at multiple OSATs
- Eager to collaborate with more customers to characterize and optimize test deflection of new devices!