Optical edge coupling method for fully automated PIC wafer-level testing

FORMFACTOR ${ }^{\text {m }}$

Dan Rishavy, Joe Frankel, Quan Yuan,
Simon Reissmann
Anna Peczek, Christian Mai, Georg Winzer,
Lars Zimmermann

Overview

- Introduction
- Probing features
- Component of the system
- Requirements and DUT
- Wafer-level results
- Summary

IHP

Innovations for High Performance Microelectronics

Institute for R\&D \& Prototyping

- RF SiGe BiCMOS Technology
- $0.25 \mu \mathrm{~m}$ and $0.13 \mu \mathrm{~m}$ CMOS
- 200 mm wafers
- 100 WSW
- Silicon Photonic MPW (SiPh and BiCMOS)

Silicon Photonics

- Photonics building blocks realized in silicon technology:
- Waveguides
- Grating/edge couplers
- Phase shifters
- Photodiodes
can be combined with electronics.
- Application space

Author

SILICON PHOTONICS fits to microelectronics value chain

Electrical probing

State-of-the-art:

- Automated probing on wafer
- Vision probe recognition
- High repeatability
- High throughput

We expect the same from optical probing!

Optical vs. electrical probing

- In contrast to electrical probing exact optical probe placement matters, also in Z direction
- Prober XY accuracy: $2 \mu \mathrm{~m}$ (1б)
- Chuck planarity: $\pm 5 \mu \mathrm{~m}$

Required:

- Position accuracy in sub micron range
- non contact optical power optimization
- Height control of the fiber
- Reasonable time for the alignment

On-wafer optical coupling interfaces

	Grating coupler
Test methodology	vertical
Fabrication effort	without extra
Footprint	small
Equipment (Cost)	low
Coupling loss	> 3dB
Polarization dependance	high
Bandwidth	<40 nm
On- wafer testing	available

Grating coupler
vertical
without extra
small
low
$>3 \mathrm{~dB}$
high
<40 nm avalable
available

Edge coupler
horizontal / edge with extra medium high
$<2 \mathrm{~dB}$
low

$$
>100 \mathrm{~nm}
$$

Now available

Equipment for on-wafer PIC characterisation

- 300 mm Probe Station FormFactor CM300xi with Loader
- 6-axis positioners with Nano Cubes (PI)

- Optical Probe

Pharos aLens for horizontal/ edge coupling

Cleaved Fiber for vertical coupling

Pharos Lens for Silicon Photonics Probing

- Wafer level edge and vertical coupling designs
- Short and long working distance designs
- High coupling efficiency
- High repeatability and stability
- Nearly collimated beam with Plane front wave at grating coupler taper
- Ultra long working distance(WD) possible - ex. up to $>800 \mu \mathrm{~m}$
- Tolerant in Z (beam propagation direction) for vertical
- i.e. large coupling range
- Mode field diameter and working distance

Applicable for wafer level trench and v-groove

Pharos Lenses for Grating and Edge Coupling

Short Edge Pharos lens (Trench)

Long Edge Pharos lens (V-groove)
\qquad

OptoVue Pro

Coupled Power by Structure - LB1_8

36 die 1 subdie 4 channels 24 passes

Coupled Power vs Wafer Position - LB1_8

Scanning and 3D coupling result-Long Lens (MFD=6 $\mu \mathrm{m}$)

One scanning example

Max coupling at 59um which agrees with simulation

Input power - 2.2 dBm
Power coupler loss (7.7-2.2)/2=2.75dB/faucet

3D coupling indicate the waveguide beam direction in Edge coupling (6um) - V-Groove

Power coupling contour in 3D dimension (Color indicates power level)
ISO view 20um Spiral Scans

20 um away from Waveguide

120 um away from Waveguide

FormFactor

3D coupling indicate the waveguide beam direction in Edge coupling - Trench

Power coupling contour in 3D dimension (Color indicate power level)
ISO view
20um Spiral Scans

Probe Card Integration

$\mathbb{』}$ FormFactor

FFI Apollo Probe technology adapted for SiPh probing

Probe Card Top View

Probe Card Bottom View

Probe Card Integration with Edge Coupling Pharos

FFI Apollo and Pharos Probe Technology is currently being used for production testing of edge coupled wafer level V-groove Co-Packaged Optics devices

Test setup at IHP

Device under test

200 mm PIC wafer

Photograph of the test chip with overlapped layout

Test chip consist on:

- Ge photodiode
- Waveguide loop
- 3 cm long waveguide
- 6 cm long waveguide

Design and fabrication requirements

Requirements:

- Trench width > $95 \mu \mathrm{~m}$
- Trench depth > $60 \mu \mathrm{~m}$
- Wafer fiducial present
- Pharos spot size range 2-10.2 $\mu \mathrm{m}$

Testing step by step

1. System Calibration \rightarrow Essential for accuracy and automation
2. Trench quality control \rightarrow Important to not damage the Pharos Lens
3. Selecting the test dies
4. Calibration of the optical path and measurement instruments
5. Preparation of the measurement project (IC-CAP Keysight)
6. Running the measurement sequence ...
..... and waiting for the results.

Grey chips excluded from tests due to trench imperfections

Alignment

Fully automated, algorithm-based with user-defined parameters

Grating coupler

Edge coupler

Mean coupling loss: $2.8 \mathrm{~dB} \pm 0.1 \mathrm{~dB}$

Optical bandwidth
 Wafer level distribution

Repeatability

Coupling via grating coupler

- over 4 dies
- 2 test structures
- repeated 17 times

sigma ~ 0.02 dB

Coupling via edge coupler

- over 31 dies
- 1 test structure
- repeated 20 times

sigma ~ 0.02 dB

Measurement time

Summary

- Fully automated edge coupling was demonstrated on 200 mm wafer
- The system includes advanced, automated calibration routines for high accuracy PIC characterization
- Comparison with established grating coupler probing shows no significant drawback.

Thank you for your attention !

anna.peczek@ihp-microelectronics.com dan.rishavy@formfactor.com

