

Optical edge coupling method for fully automated PIC wafer-level testing

Dan Rishavy, Joe Frankel, Quan Yuan, Simon Reissmann

Anna Peczek, Christian Mai, Georg Winzer, Lars Zimmermann

SWTest | June 3 - 5, 2024

Overview

- Introduction
- Probing features
- Component of the system
- Requirements and DUT
- Wafer-level results
- Summary

IHP Innovations for High Performance Microelectronics

Frankfurt (Oder)

Institute for R&D & Prototyping

- RF SiGe BiCMOS Technology
- 0.25 μm and 0.13 μm CMOS
- 200 mm wafers
- 100 WSW
- Silicon Photonic MPW (SiPh and BiCMOS)

rgo oEssen

Düsseldorf
 OKöln

Frankfur am Main

Freiburg in Breisgau Braunschweig

Magdeburg

Nürnberg

Deutschlan

(Germany)

Silicon Photonics

- Photonics building blocks realized in silicon technology:
 - Waveguides
 - Grating/edge couplers
 - Phase shifters
 - Photodiodes
 - can be combined with electronics.

Application space

Author

Source for pictures: https://www.racksolutions.eu, https://phononic.com/resources/automotive-lidar-2020/, https://www.radartutorial.eu

4

SILICON PHOTONICS fits to microelectronics value chain

SWTest | June 3 - 5, 2024

https://www.indiamart.com/

Electrical probing

State-of-the-art:

- Automated probing on wafer
- Vision probe recognition
- High repeatability
- High throughput

We expect the same from optical probing !

Optical vs. electrical probing

- In contrast to electrical probing exact optical probe placement matters, also in Z direction
- Prober XY accuracy: 2 μm (1σ)
- Chuck planarity: ±5 μm

Required:

- Position accuracy in sub micron range

 non contact optical power optimization

 Height control of the fiber
- Reasonable time for the alignment

On-wafer optical coupling interfaces

	Grating coupler	Edge coupler
Test methodology	vertical	horizontal / edge
Fabrication effort	without extra	with extra
Footprint	small	medium
Equipment (Cost)	low	high
Coupling loss	> 3dB	<2 dB 🕺
Polarization dependance	high 🖉	low f
Bandwidth	<40 nm	> 100 nm
On- wafer testing	available	Now available
www.acienaedirect.com/acienae/article/abs/pii/P0720128122528000087		

Source of pictures: https://www.sciencedirect.com/science/article/abs/pii/B9780128133538000087

Author

SWTest | June 3 - 5, 2024

Equipment for on-wafer PIC characterisation

- 300 mm Probe Station FormFactor CM300xi with Loader
- 6-axis positioners with Nano Cubes (PI)

Optical Probe

Cleaved Fiber for vertical coupling

SWTest | June 3 - 5, 2024

CAP sensors

Pharos Lens for Silicon Photonics Probing

- Wafer level edge and vertical coupling designs
 - Short and long working distance designs
- High coupling efficiency
- High repeatability and stability
- Nearly collimated beam with Plane front wave at grating coupler taper
- Ultra long working distance(WD) possible ex. up to >800µm
- Tolerant in Z (beam propagation direction) for vertical
 - i.e. large coupling range
- Mode field diameter and working distance

Applicable for wafer level trench and v-groove

CONFIDI

Pharos Lenses for Grating and Edge Coupling

Short Edge Pharos lens (Trench)

Top View (Fiducial)

OptoVue Pro

Coupled Power by Structure – LB1_8

SiPh Verification Test Summary Single-Sided West SubDie(1), LB1_8, SN# 1836175, Jun 12 2021, 7:02 PM 36 structures, 865 measurements, $\sigma_{\rm tot}$ = 0.04 [dBm], result : FAIL -9.5 in spec $\Delta P < 0.3$ [dB] failed spec $\Delta P > 0.3$ [dB] X - min coupled power spec P > -12 [dBm] $-9.\xi$ -9.79 \pm 0.05 [dB] (1 σ) \pm 0.04 [dB] (1 σ) -10 -9.8 -9.8 -9.99 \pm Ω_{0} 04 [dB] (1 σ) + -10.22 \pm 0.03 [dB] (1 σ) -10.2 ± 0.04 [dB] (-10.26 ± 0.04 IdB -10.37 ± 0.02 [dB] (1 σ) -10.5 -10.29 ± 0.07 0.05 [dB] (1*σ*) -10.43 ± 0.0 03 [dB] (1 -) -10.40 ± 0.05 [dB] (1 σ) -10 [dBm] -11- Coupled Power [dBm] -11.5 -10.52 \pm 0.04 [dB] (1 σ) 0.05 [dB] (1 σ) $-10.56 \pm 0.$ -10.67 ± 0.0 [dB] (10) -10.71 ± 0.04 [dB] -10.81 ± 0.00 10-1 10.00 \pm 0.04 [dB] (1 σ) -10.7 -10 -10.86 \pm 0.03 [di (1σ) -10.89 ± 0.04 [dB] (1 σ) -10.94 ± 0.04 [dB] (1 σ) -11.14 \pm 0.04 [dB] (1 σ) -11.49 ± 0.03 [dB] (1σ) -11.52 ± 0.04 [d] (1 σ) -11.75 ± 0.04 [dB] (1 -12 -11.7 = ± 0.00 jub (10) $-11.88 \pm 0.05 \text{ [dB]} (1\sigma)$ -12.5 -12.56 \pm 0.04 [dB] (1 σ)

36 die 1 subdie 4 channels 24 passes

Coupled Power vs Wafer Position – LB1_8

36 die 1 subdie 4 channels 24 passes

Scanning and 3D coupling result-Long Lens (MFD=6µm)

One scanning example

Input power -2.2 dBm

Power coupler loss (7.7-2.2)/2=2.75dB/faucet

Max coupling at 59um which agrees with simulation

3D coupling indicate the waveguide beam direction in Edge coupling (6um) – V-Groove

3D coupling indicate the waveguide beam direction in Edge coupling – Trench

Probe Card Integration

CONFIDENTIAL

FFI Apollo Probe technology adapted for SiPh probing

Probe Card Bottom View

Probe Card Integration with Edge Coupling Pharos

FFI Apollo and Pharos Probe Technology is currently being used for production testing of edge coupled wafer level V-groove Co-Packaged Optics devices

CONFIDENTIAL

Test setup at IHP

21

Device under test

200 mm PIC wafer

Photograph of the test chip with overlapped layout

22

٠

Design and fabrication requirements

Requirements:

- Trench width > 95 μ m
- Trench depth > 60 μ m
- Wafer fiducial present
- Pharos spot size range 2-10.2 μm

Testing step by step

System Calibration → Essential for accuracy and automation
 Trench quality control → Important to not damage the Pharos Lens
 Selecting the test dies
 Calibration of the optical path and measurement instruments
 Preparation of the measurement project (IC-CAP Keysight)
 Running the measurement sequence ...

 and waiting for the results.

Grey chips excluded from tests due to trench imperfections

SWTest | June 3 - 5, 2024

Author

3,9

3,8 31

16

3,4

3,3

3,2

15 4,4

4,2

2,7

29 2,6

18

2,5

17

2,4

2,3

6,8

34

6,7

25

22

6,5

13

7,8

7,7

24 7,6

23

7,5

12

Alignment

25

Fully automated, algorithm-based with user-defined parameters

Grating coupler

Edge coupler

Mean coupling loss: $3.9 \text{ dB} \pm 0.2 \text{ dB}$

Mean coupling loss: $2.8 \text{ dB} \pm 0.1 \text{ dB}$

Optical bandwidth Wafer level distribution

SWTest | June 3 - 5, 2024

Author

Repeatability

Coupling via grating coupler

over 4 dies •

0.1

0.08

0.06

0.04

0.02

-0.02

-0.04

-0.06

-0.08

-0.1

Author

0

- 2 test structures •
- repeated 17 times •

Coupling via edge coupler

- over 31 dies ٠
- 1 test structure •
- repeated 20 times •

Measurement time

Summary

- Fully automated edge coupling was demonstrated on 200 mm wafer
- The system includes advanced, automated calibration routines for high accuracy PIC characterization
- Comparison with established grating coupler probing shows no significant drawback.

Thank you for your attention !

anna.peczek@ihp-microelectronics.com dan.rishavy@formfactor.com

SWTest | June 3 - 5, 2024